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Abstract. Convex underestimators of nonconvex functions, frequently used in deterministic
global optimization algorithms, strongly influence their rate of convergence and computa-
tional efficiency. A good convex underestimator is as tight as possible and introduces a
minimal number of new variables and constraints. Multilinear monomials over a coordinate
aligned hyper-rectangular domain are known to have polyhedral convex envelopes which may
be represented by a finite number of facet inducing inequalities. This paper describes explicit
expressions defining the facets of the convex and concave envelopes of trilinear monomials
over a box domain with bounds of opposite signs for at least one variable. It is shown that the
previously used approximations based on the recursive use of the bilinear construction rarely
yield the convex envelope itself.
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1. Introduction

Convex underestimators of nonconvex functions are frequently used in
deterministic global optimization algorithms such as the «BB algorithm of
Adjiman et al. (1998a, b). A good convex underestimator is as tight as pos-
sible and requires a minimal number of new variables and constraints. As
the underestimator becomes tighter, the number of nodes in the branch
and bound tree decreases. A reduction in the number of variables and con-
straints in the representation of the convex underestimator reduces the
computational effort to process a node in the tree.

The pointwise supremum of all convex underestimators of a lower semi-
continuous function f: x 3 x — R is referred to as the convex envelope of f
over the domain x. Similarly, the concave envelope of fis the pointwise infi-
mum of all concave overestimators of f on x. Rikun (1997) has shown that
multilinear monomials over a hyper-rectangular domain have polyhedral
convex and concave envelopes which may be represented by a finite num-
ber of facet inducing inequalities. Although the facets of individual bilinear
monomials over a rectangular domain have been determined by
McCormick (1976), and Al-Khayyal and Falk (1983), the convex envelopes
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of higher order multilinear terms have been approximated, based on the
recursive use of the bilinear case (Hamed, 1991; Maranas and Floudas,
1995; Ryoo and Sahinidis, 2001). A formula for the maximum distance
separating the convex envelope and a bilinear function was determined by
Androulakis (1995), also see Floudas (2000). Rikun (1997) postulated an
equation which, in some instances, may be used to define some facets of a
multilinear function. Tawarmalani and Sahinidis (2002) have shown in
their Theorem 9 that the convex envelope of a multilinear function f, over
a Cartesian product of polytopes, matches f only on the faces over which f
is linear. However, the explicit form of the convex envelope facets is not
given in this paper.

Further results on linear relaxations of multilinear functions have been
obtained in the context of 0-1 programming. These include the contribu-
tions of Balas and Mazzola (1984), Crama (1989), Glover and Woolsey
(1974), Hammer et al. (1984), Hammer and Rudeanu (1968), and Hansen
and Simeone (1990). Crama (1993) has characterized certain situations in
which the “standard linearization” provides the convex envelope of a mul-
tilinear function over the unit hypercube. More recently, Sherali (1997) has
derived the convex envelope for additional classes of 0-1 multilinear func-
tion over the unit hypercube and special discrete sets, but not for the gen-
eral case.

Explicit expressions defining the facets of the convex and concave enve-
lopes of a trilinear monomial over a hyper-rectangle, are derived in this
paper. These expressions are dependent on the signs on the box bounds.
We consider in this paper the cases where at least one variable has a nega-
tive lower bound and a positive upper bound. In Meyer and Floudas
(2003) we present the explicit expressions of the convex and concave enve-
lope facets for the cases of positive or negative domains.

The convex hull of the graph of the trilinear monomial is defined as fol-
lows:

C3(x) := conv({(x, x1x2x3) : x € X}),

where x := [x,X]] X [x,,%X2] X [x3,%3], and conv(:), denotes the convex
hull.

C;(x) and C3(x), denote the convex hulls of the epigraph and hypograph
of x1x7x3, (x € X):

Cs(x) 1= conv({(x, w) 1w > x1x2x3,X € X, (x,w) € R’ x RY})
Cs3(x) 1= conv({(x,w) 1w < x1x2x3,x € X, (x,w) € RN x R}).

The nonvertical facets of C;(x) and C3(x) are respectively the facets of the
convex and concave envelopes of xjx;x3 over x. It follows from Proposi-
tion 1.1 that the convex hull of the graph of a trilinear monomial is poly-
hedral.
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PROPOSITION 1.1 Consider the trilinear monomial in R, x1x2x3, and let
V={x',...,x%} be the set of vertices of the hyper-rectangle [x,x]. Then the
convex hull, Cs, is the convex hull of the vertices,

conv ({(x*, ¥{x5x5) : % € V}).

A proof of this proposition is provided in the appendix.

We assume throughout that the lower bounds are strictly less than
the upper bounds, x; < X; for all x;, hence by Carathéodory’s Theorem
(Rockafellar, 1970) each facet of C3(x) can be written as a convex combi-
nation of four points from the set {(x,[];_, x;):x € V}. When the upper
and lower bounds on a single variable are identical, the inequalities
induced by the facets of Al-khayyal and Falk (1983) for bilinear monomi-
als may be used to represent the convex hull.

Each facet is associated with a cell of a triangulation of the domain.
Once the correct triangulation is known, each facet defining hyperplane is
determined by a set of four linear equations.

2. Convex Envelope Facet Classes

The four dimensional systems of linear equations defining the facets of the
convex hull are each associated with a simplex with vertices from the ver-
tex set of x. Four types of simplex may be constructed from the vertices of
the hyper-rectangle. These types may be characterized, respectively, as hav-
ing zero, one, two or three facets which are contained in the facets of the
hyper-rectangle x. The following four lemmas describe the form of the hy-
perplanes for each of these four types of simplex and the conditions under
which the hyperplanes are facets of C3(x) and C3(x). For Cy(x) and C3(x)
the statements and the proofs are similar, the only difference being the
reversal of < to > in the inequalities. In the lemmas the @(x) case 1s indi-
cated in parentheses. In each of these lemmas we let {y,, w} denote a per-
mutation of {x;,x,,x3}, and use superscripts 4 and B to denote upper and
lower bounds interchangeably. If x# corresponds to a lower bound on x;
then x? corresponds to the upper bound on the same variable. 4 may be
used to indicate the upper bound on one variable x; while indicating the
lower bound on another variable x;, j # i. For example, the substitutions
1 — x5, Yy — % and o — x; imply that y% =X, Y% = x; and w® = x;.
The proofs of these lemmas are provided in the appendix.

LEMMA 2.1. Under the conditions,
XAll,AwA + XBll,Ba)A + XBlpA(DB § (Z) 2XBlﬁACUA + XAl//BCL)B, (21)

XAlpA(/JA + XBlpB(UA —f—XAl,DB(,{)B < (Z) 2XAwaA +XBU,DACOB7 (22)
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ot + Bl + BwP < (>) 27 0P + yByPor, (2.3)
BBl + Bylw? 1+ AyBwP < (>) 21 BYP0lf + iyt (2.4)

the hyperplane,
w=0,+ 0y + 0,0+ 0.,

where,
%Z?#Wﬁ+ﬂww—fww—fWMM#—ﬁ
0y = 5 (P e = Pyt — R ()
0, = 1 (BB + y W ot — Bytal — AyBaP) /(0! — o)

2
0. =yt — 0,47 — 04y — 0,0"

defines the affine hull of a facet of C4(x)(C3(x)). The projected vertices of the
facet are

{(XAa ¢A7 wA)a (XBv lﬁBa wA)7 (XBa lpA’ wB)a (XA7 l//Ba wB)}'

LEMMA 2.2. Under the conditions,

XBIPBCUA +XBlpA(UB < (Z) XBIPACUA +XBlpBCOB, (25)
XBI/JACL)A —|—XAlpB(1)B < (Z) XAl//BOJA —|—XBlﬂAOJB, (26)
XBI//A(DA —{-}{All/BCUB < (Z) XAlﬁAQ)B —{—XBI//B(UA, (27)
2XBWA(,{)A —f—XAIﬁB(,OB < (Z) XAwAwA _f_XBwaA +XBlpAwB7 (28)

the following equation defines the affine hull of a facet of C5(x) (C3(x)):

1+ 2oy + Pylo

W:%B_XA

04
+ (_ XB - yA _ XBI//B(UA _ XB$AwB + XAl//B(UB>,

where 0 = yPyPot — y Pl — yBytot + Pyt oP.
The projected vertices of the facet are:

{GE 7, 0™, (08, 0®), 8 9, o), (1, o)}
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LEMMA 2.3. Under the conditions,

o + Pt ot < (2) Pyto” + Yo (2.9)

XBI//A(DB + XAI//BCL)B < (2) XBI,DBCOB + XAwACUB (210)

XBIPACOA + XAlpB(DB < (Z) XAlpBwA + XBwAa)B (211)

XBwAwA 4 XAlpBCUB S (Z) XAwAwB + XBIPBCUA (212)
the equation,

W:wAwBX+XAwa+XBwAw_XAwAwB_XBl//AwB (213)

defines the affine hull of a facet of Cy(x) (C3(x)). The projected vertices of
the facet are:

{(XA7 ’1037 wB)’ (XA7 lpA7 wB)? (XB’ lpA7 ('OB)7 (XB’ lpA7 wA)}'
LEMMA 24. Under the conditions,

1o + Pyt et < (2) o + 1 Bytof, (2.14)

1WA 0? + et < (=) Yo + Yo, (2.15)

2P0t + By tot < (=) Yo + PyPor, (2.16)

XAlpAwB + XBwAwA + XAwaA S (Z) 2XAIPA(,OA + XBIPBCUB, (217)
the hyperplane,

w =y oty + oty + Yo - 27 ! (2.18)

defines the affine hull of a facet of C4(x) (C3(x)). The projected vertices of
the facet are

{0y o), G2y o), (9P, o), (1wt o)}

3. Main Results: Facets of the Convex Envelope

The description of the nonvertical facets of C;(x) depends on the signs of
the bounds on x. Here we give the facets for the cases where, for at least
one variable, the lower bound is negative and the upper bound is positive.
The symbols x, y, and z are used to denote a permutation of x;, x, and x3.
In addition to the signs of the bounds, in some cases there are auxiliary
inequalities that must be satisfied for the facets to apply.
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3.1. CASEl:gZO,XZO,ggO,ZZO
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The linear equalities defining the facets of C;(x) are:

W =yzx + Xzy + Xyz — 2Xyz

W= VX + Xy + XJz — XVZ — XTZ
W= YIX+ XZy + XYz — XYZ — XyZ
W= VIX + Xzy + XYz — XyZ — X)z

w:ng—i—ngﬁLQz—YXg—Qg

W =YIX + XzZ) + z

Z—z

(oo )
+ | —= — XYz —Xyz+Xxyz |,

Z—z

where 0 = xyZ — Xyz — x)Z + X)Z.
32. CASE2:x>0,y<0,2z<0,y>0,2>0

(3.19)
(3.20)

(3.21)
(3.22)

(3.23)

(3.24)

Mapping {x;,x2,x3} onto {x,y,z} in such a way that the following rela-

tion applies,

Xyz +xyzZ < xyz +X)Z,

the linear equalities defining the facets of C;(x) are:

W =yzx + Xzy + Xyz — 2Xyz
w:ng+ng+YXz—2XXg
W= YIX+ XZy + XYz — XYz — XyZ

W= YIX + X2y + XYz — XVZ — X)z

0
w:ny—i——l_y—i—lyZ
2 y—7¥ 2

0y o
+ 11— —— XYz —Xyz+Xxyz|,
y—y - B

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)
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where 0 =xyz — Xyz — xyZ + X)Z

W =YZX + XZy + = 2
4 z_2
bz _
+ | —= —XyZ — Xz +Xyz |, (3.30)
Z—z =

where 0, = XyZ — Xyz — XyZ + xJZ.
33. CASE3:x<0,y<0,z£0,Xx>0,y>0,2>0

Map {x1,x2,x3} onto {x,y,z}. If the following conditions apply:

Xyz +X)Z + XyZ < xpz + 2X)Z,

Xyz +Xyz + XyZ < XyZ + 2Xyz,

Xyz +Xyz + XyZ < XyZ + 2xyz,

Xyz +XyzZ +xyz < Xyz+2x)Z,

the linear equalities defining the facets of C;(x) are:

W =yzxX + Xzy + Xyz — 2xyz

W= YIZX + XZy + xyz — 2x)Z
w=yzx + Xzy + Xyz — 2Xyz

W= yzx +Xzy + Xyz — 2?)_/;
w=0x+0,y+0.z+0,,

where
|
O = 5 (307 + xpz — ¥z = 3p7)/ (x = X),
1, _ _ _
|

0: = 3 (72 + xyz = %yz — x37) /(2 - 2),
0. =xyz—0,x—0,y — 0.z

Otherwise if the following condition applies:
Xyz +XyZ + Xyz > xyz + 2X)Z,

the linear equalities defining the facets of C;(x) are:
W =YzX + Xzy + Xyz — 2xyz
W= YIX + XZy + xyz — 2x)Z
W = yzx + Xzy + Xyz — 2%)_/;
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0
W= ——X+ X2y + Xz
X—x

(-5 e+ )
+|—= —Xyz —Xyz+xyz |,

X—x

where
0y = Xyz — xyz — Xyz + X)Z

)
zZ—-z

w=Yyzx +Xxzy + z

( = ¥ )
+ [ —= —Xyz —Xxyz+xyz|,
= z o
where

0 = Xyz — xyz — Xyz + X)zZ

0
w:)/—zx+_—3y+ﬁz
y=—y

Oy _
+ | ———Xyz—Xyz+xyz |,
y=y -

where
03 = Xyz — xyz — Xyz + X)Z.

If neither of the above sets of conditions apply, mapping {x;, x»,x3} onto
{x,y,z} in such a way that the following relation applies,

Xyz +Xyz +XyZ > XyZ + 2Xyz,
the linear equalities defining the facets of C;(x) are:

W =yzX + Xzy + Xyz — 2xyz
W =yIX + XZy + Xyz — 2xyZ

w =yzx + Xzy + Xyz — 2Xyz

0
w:ygx—l——l_y—i-fyz
R y—7 s

0y -
+ | - — — Xyz —Xyz+xyz |,
y—y - B

where



CONVEX ENVELOPE OF TRILINEAR MONOMIALS 133

0y = xyz — XyZ — Xyz + X)Z

W= = X+ Xzy + Xyz
X—Xx =
bhx __ _
+ (—x_l—xyg—xzz—kiyz),
where

0 = Xyz — XyZ — Xyz + X)Z

03
—z

W= yzXx + Xzy +
Y Iz

(-]
= xyz-Nz+ 7 ),

z—2Z
where
03 = xyz — XyZ — Xyz + Xyz.
3.4. CASE4: x>0, y<0,2<0,7>0

Mapping {x;,x2,x3} onto {x,y,z} the linear equalities defining the facets
of C4(x) are:

W = yzx + Xzy + Xyz — 2Xyz

W =YyzX + XZy + XVz — Xyz — XJZ
W= YIX + Xz + XYz — XYz — X)z
W= VIX +XZy + XYz — XYZ — X)zZ

W =YIX + XZy + Xyz — XYZ — XyZ

0
wW=yzx+——y+xyz
A y—3 2

Oy —
|l ——=-z-xwz+3z),
y-y - -

where

0 =Xyz — Xyz — X)Z + xyz.

3.5. CASES: x <0, y<0,2<0,X>0, 7>0
Mapping {x;,x3,x3} onto {x,y,z}, if the following condition holds:
Xyz +Xyz < Xyz + xyZ

the linear equalities defining the facets of C;(x) are:
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w = yzx + xzy + Xyz — 2xyz
W = yzx + Xzy + Xyz — 2Xyz
W= YIX+XZ) + XYz — XVZ — X)Z
W= VIX + XZy + XYz — XYZ — X)Z

0
w:_1 X+XZy +Xyz
(-0 e
- —Xyz — XVZ 4+ xyz
X—x VZ — Xyz +X)yz |,
where

0 =Xyz — xyz —Xyz +X)zZ
— 0> —
wW=yzx+——y+ Xyz
y—y

022

where
0 = Xyz — xyz — Xyz + X)Z.
Otherwise, the linear equalities defining the facets of C;(x) are:
W =yzX + Xzy + Xyz — 2xyz
W= yzx + Xzy + Xyz — 2?)_/;
W= YIX+ XZ) + Xyz — XyZ — X)Z

W= JYIZX + XZy + XYz — XJZ — X)Z

0
W= lfx+ﬁy+lcyz
X—X =
0:1x o
+ (———=—xyz — X3z + Xyz),
X—X =
where

0y = xyz —Xyz — XyZ + xyz

0
w:yfx—l——z_y—i—&yz
2 y—7 .

0.y o
+ | — ——Xyz—Xyz+xyz|,
y—y - -

where
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0r = xyz — Xyz — XyZ + X)Z.
36. CASE6: x <0, x>0,7<0,z2<0

Mapping {x;,x2,x3} onto {x,y,z} the linear equalities defining the facets
of C5(x) are:

W= yzx + Xzy + Xyz — 2%)_/;

W= JZX + Xzy + XFz — XTZ — X)z
W= VIX + XZy + XYz — XYZ — X)Z
W= YIX + X2y + XYz — XyZ — X)Z
W= YzX + Xzy +Xyz — Xyz — Xyz

w= X+ XZy +Xyz

X—x

(525
+ |-z — XYz — XYZ+Xyz |,
X—x = =

where
0 =Xyz — xyz — Xyz + X)Z.
3.7. ILLUSTRATION 1

To construct the lower bounding facets of C;(x) where x = [—1,2]x
[—5,—2] x [-3,5] we first observe that there are three negative lower
bounds and one negative upper bound, so Case 5 applies. We substitute
Z < X, as X, is the only variable with both negative lower and upper
bounds. If, arbitrarily, we substitute x < x; and y « x3 the condition,

Xyz +Xyz < Xyz + X)Z.
translates into the form,
X1 XoX3 + X1X2X3 < X1X5X3 + X X2X3
(=D(=5)(=3)+ 2)(=2)(5) < 2)(=3)(5) + (=1)(=2)(=3)
—35 < =56,

so the condition does not hold. Therefore we use the second set of equations
for Case 5 which, on substituting x < x|, z < X», y <« x3 is as follows:

W= X3XpX] + X1 XpX3 + X X3X2 — 2X X3,
W= X3X,X] + X1X,X3 + X1 X3X2 — 2X1X3X,
W = X3X2X] + X1X2X3 + X1X3X2 — X1X3X2 — X[ X3X2

W = X3X2X| + X;X2X3 + X1 X3X2 — X X3X2 — X{X3X2
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w= — X + X X2X3 + X1 X300
X1 — X1

01x, —_ A
+ | — — — X1 X3X); — X X3X2 + X1X3X, |,
X1 — X1

where

01 = X1X3X) — X1X3X) — X1 X3X2 + X1 X3X2

0>
W = X3X2X] + P—— X3 + X1X3X2
X3 — X3

92?3 _ _
+ |- — — X X3X); — X1 X3X2 + X1X3X) |,
X3 — X3

where

0 = x1X3X; — X1X3X, — X1 X3X2 + X1 X3X2.
Substituting values we get,

w= —25x; + 5x3 — 5x, — 50,

w = 15x; — 10x3 — 6x, — 60,

w = 6x; —4x3 + 10x; + 8,

w= —10x; + 2x3 + 10x, + 10,

w=—17x; 4+ 2x3 + 3x, — 11,

w = 6x] — 6.625x3 + 3x, — 13.875.

4. Main Results: Facets of the Concave Envelope

The description of the nonvertical facets of C3(x) for the six cases is pre-
sented in this section.

41. CASE1: x>0, y>0,2<0,2>0

Mapping {xi,x2,x3} onto {x,y,z} the linear equalities defining the facets
of C3(x) are:

W =yzxX +Xzy + Xyz — 2Xyz

W= YIX + X2y + XYz — XYZ — X)z
W = VIX + XZy + XYz — XVZ — X)Z
W= VX + Xy + XJz — XVZ — X3z
W= VIX + XZy + XYz — XYZ — X)Z
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w =yzx + xzy +

—z
z—2Z

+ (— 0?_—3%—@24‘)6—)/2)7
z—2z =
where
0 =Xyz — Xyz — xyz + xyz.
42. CASE2: x>0, y<0,2<0,5>0,Z>0
Mapping {x;,x2,x3} onto {x,y,z}, if following relation applies:
Xyz +Xyz > Xyz + Xz,
the linear equalities defining the facets of C3(x) are:
W =yIX + XZy + Xyz — 2X)Z
W =yzX + Xzy + Xyz — 2X)z
W =VIX + XZy + XYz — XVZ — X)Z
W =YIX + X2y + XYz — XYZ — XYz

1
—z

w=yzx + xzy +
Y, Iz

( 0,z _ _ _>
+ | — - — Xyz —XxXyz+ Xxyz |,
z—Z
where

0y =Xyz — Xyz — xyz + xyz
SR
w=yzx +——y + xyz

+ (—ﬂ—fyz—lﬁ'f'm)?
r=—y - -
where
0 =Xyz — XyZ — xyz + X)Z.
otherwise the linear equalities defining the facets of C3(x) are:
W = yZX + XZy + Xyz — 2X)Z
w=Yyzx + Xzy + Xyz — 2Xyz
W= YIX + XZy + XYZ — XYz — XYz

w:ng+§Zy—|—)_c;_/z—£Xg—)_ch
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1
= z
zZ—z

W =YIX + XZy +

(52w
+ | — — Xy —Xyz+Xyz |,

Z—z
where
0y =Xyz —Xyz — xXyz + x)Z

0
w:y—zx+_72y+ﬁz
y=J

by
+ | —=———Xyz—Xxyz+Xxyz |,
y=) -

C. A. MEYER AND C. A. FLOUDAS

43. CASE3:x <0, y<0, 2<0,X>0,7>0,2>0

Map {xi,x2,x3} onto {x,y,z}. If the following conditions apply:

Xyz + Xyz + XyzZ >2XyZ + 2xyz,
XYz + XyZ + Xyz >2Xyz + 2X)Z,
Xyz + xyz + Xyz >xyz + 2X)zZ,
Xyz + Xyz +XyZ >xyZ + 2Xyz,

the linear equalities defining the facets of C3(x) are:

W= yzxX + xzy + xyz — 2xyz
w=yzx + Xzy + Xyz — 2Xyz
W = YZX + XZy + Xyz — 2XyZ
W =3Vzx + XZy + Xyz — 2Xyz

w = Hxx+9yy+922+007

where
1 -
0, = E(xzz—l-xyz —XyZ —xyz)/(X — x)
1 o _
0y =5 (xyz + %7 — )7 = Xpz) /(7 — )

(4.21)
(4.22)
(4.23)
(4.24)

(4.25)



CONVEX ENVELOPE OF TRILINEAR MONOMIALS 139

1
0 = = (xyz+Xyz — xyz — Xyz)/(Z — 2)

[\

0. =xyz—0,x—-0,y—0.Z.
Otherwise if the following conditions apply:
Xyz + Xyz + XyZ < X)Z + 2xyz,
the linear equalities defining the facets of C3(x) are:

w = yzx + Xzy + Xyz — 2Xyz
W = yZX + XZy + Xyz — 2X)Z
W= VEX + XZp + XVz — 277

W= yzx +Xzy + -z

z—Z

< 0,z _ _ _>
| =Xz Xz + Xz |,

z—Z

where

0y = Xyz —Xyz — xyz + xyz

0,
X—X

w= X+ Xzy + Xyz

( 0,x _ _ )
+ |- —— XYz —Xyz+Xyz |,
X—X -

where
0 = xyz —Xyz — xyz + Xyz
03
W= YyIX +——y+xyz
J y—7 y
03y _ _
+ | ———=—xyz —xyz+xyz |,
Y=y - -
where
03 = xyZ — Xyz — xyz + Xyz.

If neither of the above sets of conditions apply, mapping {x;, x>, x3} onto
{x,y,z} in such a way that the following relation applies,

Xyz + XyZ +XyZ < Xyz + 2X)Z,
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the linear equalities defining the facets of C3(x) are:
W:)_/gx—i-w—i-lZZ—ZQg
W= Yyzx + Xzy + Xyz — 2X)z
W = VX + XZy + Xyz — 2X)Z

0
w= 1_x+z§y+@z
X—X
< 0,x _ _ _ >
+ | - —— XYz —Xxyz+Xyz |,
x-X % =
where

0y = xyz — Xyz — xyz + Xyz

0
w:ﬁx—kf—zy—f—)_cyz
y—Y

by
+ | —=——Xyz—Xxyz+Xxyz |,
y=J -

where

0 = Xyz — Xyz — Xyz + Xyz

03
zZ—z

W =YIZX + XZy + z

(-2
+ | —= —XYI —Xyz+Xyz),

Z—z

where

03 = xyZ — Xyz — XyZ + X)Z.

44. CASE4: x>0, y<0,2<0, 7>0

Mapping {x1,x2,x3} onto {x,y,z} the linear equalities defining the facets
of C3(x) are:

w=yzx + Xzy + Xyz — 2Xyz

W = VIX + XZy + XYz — XYZ — X)Z
W= YIX + XZy + XYz — XyZ — X)z
W= YzIX + XZy + Xyz — XVZ — Xz
W= VIX + XZy + XYz — XYZ — X)Z
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_ 0 _
W=YyzX+——)y+Xyz
Y=y
Oy _
+|—————xXz-Xyz+Xxyz |,
y—=y -
where
0 = xyz — Xyz — XyZ + X)Z.

45. CASES: x <0, y<0,2<0, x>0, 7>0

Mapping {x;,x2,x3} onto {x,y,z} in such a way that the following rela-
tion holds,

Xyz+XyzZ > xXyz+XyZ

the linear equalities defining the facets of C3(x) are:
w:)_/gx—f—x_zy—f—lzz—2izg
w=yzx + Xzy + Xyz — 2Xyz
W= VIX + XZy + XYz — XyZ — X)Z

W= VIX + X2y + XYz — XyZ — X)Z

W= X+ xzy+ xyz

X—X

< 0,x _ _ >
+ |- —— XYz —XYZ+Xyz |,
x—X - T
where

0y = xyz — Xyz — XyZ + x)Z

0
W:ﬁx—i-_—zy—i—)_cyz
y=>7

by
+ | —=——Xyz —xyz+Xxyz |,
y=>y -

where

0 = Xyz —Xyz — xXyZ + Xyz.

4.6. CASE6:x <0, ¥>0,7<0, 2<0

Mapping {x1,x2,x3} onto {x,y,z}the linear equalities defining the facets
of C3(x) are:
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W = yzxX + xzy + xyz — 2xyz

W= VIX + XZy + XYz — XYZ — X)Z
W = VIX + XZy + XYz — XYZ — X)Z
W = YZx + Xzy + Xyz — X7 — X9z
W= YIX + XZy + XYz — XYz — XYz

w= X+ XZy + xyz

X —X

= vz-xyz+xz),
x—X i

where

0 = xyz — Xyz — XyZ + X)Z.

4.7. ILLUSTRATION 2

This illustration demonstrates the upper bounding facets of Cs3(x) where
x = [-2,1] x [-3,1] x [-4, 1]. As the upper bounds are all positive and the
lower bounds are all negative Case 3 applies. With the substitutions

X < X1, y < X2 and z < x3 the conditions,
Xyz + Xyz + XyZ > XYz + 2xyz,
Xyz + XYz + XyZ > Xyz + 2XJZ,
Xyz + XyZ +Xyz > xyz + 2X)Z,
Xyz + Xyz +Xyz > xyZ + 2Xyz,
translate into the form,
X1X5X5 + X1 X0X3 + X1 X5X3 > X1X2X3 + 2XX)X;3
26 > — 47,
X1X2X3 + X1 X5X3 + X1 X2X3 2> X1 XoX3 + 2X1X2X3
15> 8,
X1X5X3 + X1 XoX3 + X1 X2X3 > X1 X2X3 + 2X1X,X3
19 > 2,
X1XpX3 + X1 X0X3 + X1 X2X3 > X1 X5X3 + 2X 1 X2X;5
21 > - 2.

All of these conditions hold hence Equations (4.21), (4.22), (4.23), (4.24),

and (4.25), define the facets of C3(x):
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W= XpX3X] + X X3X2 + X XpX3 — 2X1 X, X5
W = XoX3X] + X1 X3X2 + X1 X2X3 — 2X1X2X3
W= XpX3X] + X[ X3X2 + X1XX3 — 2X1X,X3
W = XoX3X] + X;X3X2 + X[ X2X3 — 2X| X2 X3

w=0x1 + nyz + 0.x3 + 0.,

where
| — _ _ _
O = E(x@z& + XXX — X1 X% — X1 X2x3) /(X1 — xp)
1, _ — _ _
0, = 3 (X1 X2X3 + X1 X2X3 — X1 X5X3 — X1X5X3) /(%2 — Xp)
1 o _ _ _
0: = 5 (0107 +X130%3 — X Xox; — X120X3) /(%3 — x3)

0. = X1 %%3 — 0,%) — 0,% — 0.Xs.
Substituting values we get,

w = 12x; + 8x, + 6x3 + 48,

w=—4x; —4x; + 1x3 + 8§,

w=—-3x;1+1x, —3x3+ 6,

w=1x; —2x, —2x3 + 4,

w=0.16x; — 1.125x; — 1.3x3 + 3.5916.

5. Proofs for the Facets of the Convex Envelope

In this section we prove that the equalities presented in Sections 3 and 4
define the respective affine hulls of the facets of C;(x) and C3(x). A facet
projected onto the domain is a simplex in R>. These simplices partition the
hyper-rectangle x into a triangulation. In each case, the set of facets is seen
to be complete as the simplices cover x.

The vertices of the hypercube are denoted by: v, :=(x,y,z2),
V) i= (Ya_)_/az)a V3 i= (E?yag)a V4 1= (X7y72)5 Vs 1= (laZ,E)a Ve 1= (Yazyz)a
v = (x,7,Z), vg :=(X,7,Z). To facilitate the proofs we introduce the
notation {; =uxyz, (b =Xyz, =xyz, =Xz, (=x)7, (6 =XN)7,
{7 = xyZ and {3 = xyz. The following inequalities are used extensively in
the proofs:

L+G2 () G+ ifx>(X)0, (5.20)

L+G2> () L+ ifX>(<)0, (5.21)
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L+06> () L+ ify>(<)0,
G+E>2(2)L+G ify>(X)0,
+L> () L+ ifz>(X)0,

G+ > (L) G6+EG ifz>(K)0.

These inequalities are based on the following types of relation:
(x =x)(y —y) > 0forall x € [x,5],y € [y,7]
(x =X)(y —¥) > 0forall x € [x,X],y € [y,¥].

(5.22)
(5.23)
(5.24)

(5.25)

An auxiliary condition which does not necessarily follow from the signs on
the lower and upper bounds is also used in the proofs of cases 1 and 2 for

Q3(X)>
a4+ 0 <G+ .

(5.26)

The following propositions are statements about two of the facets of C;(x)
for Case 1, where x >0, y >0, z<0, and Z > 0. In the first proposition
Lemma 2.4. is applied, in the second Lemma 2.3. All the propositions fol-

low a similar format which can be condensed into a tabular form.

PROPOSITION 5.1. If x>0,y>0, z<0, and z> 0, then the following

equation defines the affine hull of a facet of C;(x):
W=YZX+XZy+Xyz—2Xyz
The projected vertices of this facet are:

{vs, v1, v6, v4}

Proof. Apply Lemma 2.4 with the substitutions: y* — %,y — 7, 0 — Z.

Condition 2.14: {4 + {7 < {3 + {5 follows from inequality 5.23.
Condition 2.15: {4 + {5 < {5 + {, follows from inequality 5.21.
Condition 2.16: {s + {7 < {3 + {5 follows from inequality 5.25.

Condition 2.17: {4+ {7+ s < 2 + ¢, follows from inequalities 5.21,

5.22, and 5.25.

PROPOSITION 52. If x>0, y>0, z<0, and z> 0, then the following

equation defines the affine hull of a facet of C;(x):
W=YzZX+XZy+Xyz—Xyz—XVZ

The projected vertices of this facet are:
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{V4, V3, V7, Vs}

Proof. Apply Lemma 2.3 with the substitutions: y? — z, ! — x, w4 — y.
Condition 2.9: {5 + {3 < {7 + {;, follows from inequality 5.20. Bl
Condition 2.10: {; + {4 < {3 + {5 follows from inequality 5.23.

Condition 2.11: {5+ {4 < {, + {5 follows from inequalities 5.20 and 5.24.
Condition 2.12: {5+ {4 < {3+ {¢ follows from inequalities 5.22, and
5.24. ]

The remaining facets can be proven in a similar way. Table I summarizes
the proofs for the facets of Case 1 and 2 for C;(x). The information in the
columns of Table I is as follows:

Facet: The equation number of the facet referred to in the associated table
row.

Lem: The number of the lemma from which the facet is derived.
yA A, w?: The symbols substituted for y4, ¥ and w”, respectively, in the
indicated lemma.

Vertices: The vertices of the simplex defined by the facet projected onto the
function domain.

Aux: Auxiliary conditions, other than those implied by the signs of
X,),z,%,y and Z, which must hold for the facet to be valid.

Cond n: The number before the colon is the equation number of the n™
condition in the lemma, the numbers after the colon are the reference num-
bers of the inequalities from which the nh condition follows.

To clarify this table, consider the first row which refers to the facet
defined by Equation (3.19) for Case 1, x>0,y >0,2<0, and z>0.
This row summarizes the statement and proof of Proposition 5.1. To
prove that this is a facet of C;(x) apply Lemma 2.4, indicated by col-
umn “Lem” with the substitutions: y? — %,y — 7, w? «— z, indicated
by columns “y4”, “y*”, and “w?”. The projected vertices of this facet
are,

{V4a Ve, Vi1, V8 }7

indicated in the “Vertices” columns. The simplex defined by these vertices
is shown in Figure 1. There are no prerequisite conditions other than the
sign conditions, x >0, y>0, z<0, x>0, y >0, 2> 0, therefore there
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Figure 1. Simplex with vertex points supporting facet in proposition 5.1.

are no “Aux” column entries for this row. Four conditions must hold
for Lemma 2.4 to apply. The first is Condition (2.14), indicated before
the colon in the “Cond 17 column. Applying the substitutions
=%yt — 7,01 —Z, this becomes 4+ (7 < g+ (3 which follows
immediately from Inequality (5.23), indicated in the “Cond 1 column
after the colon. Similarly, the second condition (2.15), follows from
Inequality (5.21), and the third condition (2.16) from (5.25). These are
shown in columns “Cond 2” and “Cond 3”. The final condition (2.17)
follows from Inequalities (5.21), (5.22), and (5.25) as seen in column
“Cond 4.

In a similar way Proposition 5.2 can be read from the row of the table
for Facet (3.20).

6. Comparison with Other Bounding Schemes

6.1. RECURSIVE ARITHMETIC INTERVALS

Floudas et al. (1989) demonstrated that indefinite quadratic program-
ming problems and polynomial problems may be reduced to bilinear
programs through the recursive substitution of products of variables and
squares of variables. Hamed (1991) used this “‘recursive arithmetic inter-
val” (rAl) scheme for generating convex lower bounds for multilinear
monomials. Ryoo and Sahinidis (2001) compared this approach with
other bounding schemes and showed that the rAl scheme generates the
convex and concave envelope for multilinear monomials over the posi-
tive orthant. Note that this result is only for the case of the lower
bounds being equal to zero. In other words, if we have positive lower
bounds the rAl scheme does not provide the convex envelope (Meyer
and Floudas, 2003).

To represent the general bound constrained case, (x,y,z) € [x,X|X
7] x [z,Z], (x,,2) € R3, four variables are introduced, Wypz, Wy, Wiz,
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Figure 2. Simplex with vertex points supporting facet in proposition 5.2.

and w,.. The variable w,,., representing xyz, is bounded from below by the
following system of inequalities:

Wipz 2 XWyz + W X — XW,
Wiyz 2 XWyz + Wy X — XW),2,

Wxyz > XWXZ + Wy V — meza

(6.27)
W\fyz 2 7sz + szy - )/_sz,
Wyypz 2 ZWxy + Wy Z — ZW,,,
Wyyz 2 ZWxy + WyypZ — ZWy,
The bounds, Wy Wps Wyzy Wy Wy and w,., are determined by,

w,, = min{xy, xy, %y, X},
Wy = max{xy, Xy, Xy, %y},
w,, = min{xz, xZ, Xz, X2},
Wxz = max{ﬂ, XZ, Xz, ﬁ})
w,, = min{yz, yZ,7z, 7z},
W,. = max{yz, yz,7z,VZ}.

The variables w,,, w,., and w,. are substitutes for the respective bilinear
terms xy,xz and yz. The bounding schemes of McCormick (1976) and
Al-Khayyal and Falk (1983) are used to enclose these terms,

Wxy ZXX+M_£Z7
ny Zyx+xy_W7

Wiy S VX + XY — X7,
Wiy SZ?H—Y)/—Y)_%
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Figure 3. Separation distances for the convex envelope, arithmetic interval and recursive arith-
metic interval underestimators x € [1,2], y € [1,2], z € [-1,2].

Wyz 2 ZX + Xz — Xz,

Wy, 2> ZX + Xz — XZ,

_ _ (6.28)
Wyz S ZIX + XZ — XZ,
Wy < ZX + Xz — Xz,
Wy > zy + yz — yz,
Wyz Z Ey+7z _.y_Zﬂ
wy, <Zy+ yz—Jz,
Wy, <zy+yz-—Jyz.
y=-0252z=-05 y=1252=-05
3.5 4
RV .
3 , \\. 35 1
@ / ~
225 k]
=] a
8 §2%
£ > g
S @ 2
73 d &
® . Al
15r - -4y 15
/ — % P
i : 1
1 12 14 16 18 2 1 12 14 16 18 2
X X

Figure 4. Separation distances for the convex envelope, arithmetic interval and recursive arith-
metic interval underestimators x € [1,2], y € [-1,2], z € [-2,1].
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Figure 5. Separation distances for the convex envelope, arithmetic interval and recursive arith-
metic interval underestimators x € [-1,2], y € [-1,2], z € [-1,2].

Using this system, a lower bounding function fa1(x,y,z) is defined as fol-
lows:
Jfear(x,y,z) = min Wiz

WxyzyWxysWxz,Wyz

subject to (6.27) and (6.28)

It should be noted that it is not necessary to introduce all three of the vari-
ables, wy,, wy-, and w,. to represent a trilinear term, one is sufficient. The
case considered here, where all three are used, is the one that gives the
strongest representation using the rAl scheme.

y=-0.252z=-15 y=1252=-15

18 16
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g 14 312
g 3
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c 1 c
] o
2 208
508 g
b d 3os
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0.2 0.2
1 12 14 16 18 2 1 12 14 16 18 2
X X

Figure 6. Separation distances for the convex envelope, arithmetic interval and recursive arith-
metic interval underestimators x € [1,2], y € [-1,2], z € [-2,-1].
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Figure 7. Separation distances for the convex envelope, arithmetic interval and recursive arith-
metic interval underestimators x € [-1,2], y € [-1,2], z € [-2,—1].

6.2. ARITHMETIC INTERVALS

The arithmetic interval (Al) scheme is based on the multiplication of vari-
able bounding inequalities followed by the linearization of these constraints
through variable substitutions (Hamed. 1991). In the case of a trilinear
monomial the Al scheme is based the on the inequalities,

(x=x)(y = »)(z—2) =0,
(X =x)(7-»)(z=2) =0,
(X=X -»)(E-2 =0,
(x=x)(7-»)(E-2)20

iy
n

—y

Separation Distance
Separation Distance

0.5

X X

Figure 8. Separation distances for the convex envelope, arithmetic interval and recursive arith-
metic interval underestimators x € [—1,2], y € [-2,—1], z € [-2,—1].
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Table II. Lower bounding function values for x € [1,2] x [—1,2] x [-2,1]

(x,»,2) xyz Sai Jrar f

(1.000,-0.25,-0.5) 0.1250 -1.000 -1.00 —-1.000
(1.125,-0.25,-0.5) 0.1406 -1.875 -1.50 -1.500
(1.250,-0.25,-0.5) 0.1563 -2.750 -2.00 -2.000
(1.375,-0.25,-0.5) 0.1719 -2.875 -2.50 -2.125
(1.500,-0.25,-0.5) 0.1875 -3.000 -3.00 -2.250
(1.625,-0.25,-0.5) 0.2032 -2.750 =2.75 -2.375
(1.750,-0.25,-0.5) 0.2188 —-2.500 -2.50 -2.500

In the general case four variables are introduced, wy,-, wy,, wy-, and w).,
as substitutes for xyz, xy, xz, and yz. wy,. is bounded from below by the
system of inequalities,

Wipz 2 ZWxy + YWz + XWyo — YZIX — XZy — XYz + Xz,
Wyyz = ZWxy + YWz + XW), — YZX — Xzy — XYz + X)Z, (6.29)
Wypz 2 ZWyy + YWz + XWy: — VIX — XZy — XYz + X)Z,
Wyyz 2 ZWxy + YWz + XWy: — YZIX — XZy — XYz + XVZ,
and the inequalities (6.28) constraining the bilinear variables, w,,, w,., and
Wyg lower bounding function fa;(x, y,z) is defined as follows:

far(x,p,z) = min Wiz

Wiz Wy s Wz, Wyz
subject to (6.29) and (6.28)

Note that the reformulation-linearization technique of Sherali and Tunc-
bilek (1992) is a generalization of this convexification strategy.

6.3. SEPARATION DISTANCE COMPARISONS

In this section the separation distances between xyz and the rAl and Al
underestimators are compared with the separation distance between xyz
and the convex envelope. The separation distances between the function
xyz and the lower bounding functions far(x,y,z) and fiar(x,y,z) are
defined as

darl(x,y,z) = xyz — farl(x, 3, 2),
and
dip1 (X, y,2) 1= xyz — frar(x, 9, 2).
In Figures 3 to 8 two graphs are presented for each sign combination. In

each graph y and z are constant, while the separation distances are plotted
as a function of x.
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In Figure 5, the AI and rAl systems are shown to generate poor bounds
relative to the convex envelope. As the form of the Al and rAl constraints
do not match the form of the constraints that result from the application
of Lemmas 2.1 and 2.2 the Al and rAl bounding schemes cannot, in gen-
eral, represent these types of facet.

Fixing the signs on the lower and upper bounds, x,y,z, X,y and z, it
is possible to eliminate the variables wy,, w,. and w,. from the systems
of constraints (6.29) and (6.27). For example, when x>0,y >0, z<0
and Z>0 the rAl scheme can be represented by the following system
of constraints:

Wxyz > )/_Z-x + ﬁy + x_yZ — 2x—yZ,

Wyyz 2 VZX + XZy + XVz — XYZ — XYz,

Wyyz 2 VZX + X2y + Xyz — Xyz — XJz,

Wyypz 2> ZEx +Xxzy + XXZ — Xﬁ — ng,

Wyyz 2 VZIX +Xzy + Xyz — Xyz — X)zZ,

Wyyz 2 VZX + XZY + XYz — Xyz — X)Z,

Wiyz > 7296 + xzy + EXZ - @Z - QZ;

Wyyz 2 YZX +Xzy + xXyz — Xyz — Xz,

Wxyz > yix +Xxzy + YXZ - YXZ - Xyz,

Wyyz 2> VZIX + XZy + XYz — XYZ — XJZ.
Note that each coefficient is a product of two bounds, the same structure
as that seen in the constraints generated by Lemmas 2.3 and 2.4. The first
five inequalities define halfspaces supported by facets from Equations
(3.19), (3.20), (3.21), (3.22), and (3.23) respectively. Although their struc-
ture is similar, the rAl and Al schemes, do not always generate constraints
that match the constraints from Lemmas 2.3 and 2.4.

Lower bounding function values in x = [1,2] x [—1,2] x [-2, 1] are listed

in Table IT . In this table the value on the convex envelope is denoted f.

6.4. RIKUN’S FACETS

Rikun (1997) proposed a formula that may define some elements of the
convex envelope of a multilinear function. For the trilinear monomial this
formula is as follows:

w = E83x1 + &1&3x0 + & 8oxs — 2818585 (6.30)

where & = (1,6, &) is any point in R, A facet of C;(x) may be obtained
from Equation (6.30) if for a given &, w underestimates x;x,x3 at all verti-
ces of the hyper-rectangle x. For example, let x =[—1,2] x [-5, =2]x
[—3,5] as in Illustration 1. We use the vertices of x as values of & From
&= (—1,-5,5) we get the equation:
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w= —25x1 — 5x, + 5x3 — 50.

This is valid at all vertices of x, and therefore defines a facet of C;(x). Simi-
larly from & = (2, -5, —3) we obtain the facet defining equality:

w=15x1 — 6x5 — 10x3 — 60.

Any of the other vertices used for ¢ yield non-underestimators. In Illustra-
tion 1 we saw that there are six facets of C;(x), the above two and four
others which cannot be obtained from Equation (6.30).

7. Conclusions

In the paper we have presented a complete and explicit description of the
facets of the convex and concave envelopes for trilinear functions for the
cases where the signs on the variable bounds are different for at least one
variable. The result is useful from a computational point of view as a con-
vex linear lower bounding or upper bounding relaxation of a trilinear term
can be established using only five or six linear inequalities, and introducing
only a single new variable. The separation distance between the trilinear
function and the convex envelope was compared with that of approxima-
tions of the convex envelope, namely the arithmetic interval and recursive
arithmetic interval approximations. In most instances the approximations
were found to be weaker than the convex envelope itself.
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